The Great Grid Upgrade

Sea Link

Sea Link

Volume 9: Examination Submissions

Document 9.6.4 Appendix D Sensitivity analysis for the Kent and Suffolk air quality modelling to account for the updated Emission Factor Toolkit

Planning Inspectorate Reference: EN20026

Version: A July 2025

Page intentionally blank

Contents

Execu	utive Summary	1
Ex1.1	Introduction	1
Ex1.2	Conclusion	1
1.	Methodology	2
2.	Suffolk Results	3
2.1	NO ₂ Results Comparison	3
2.2	PM ₁₀ Results Comparison	4
2.3	PM _{2.5} Results Comparison	6
3.	Kent Results	9
3.1	NO ₂ Results Comparison	9
3.2	PM ₁₀ Results Comparison	10
3.3	PM2.5 Results Comparison	12
4.	Conclusion	14
	Table 2.1 Original (Based on EFT V12.1) Modelled Annual Mean NO ₂ Concentrations Table 2.2 Updated (Based on EFT V13.1) Modelled Annual Mean NO ₂ Concentrations Table 2.3 Change in concentrations between the Original (V12.1) and Updated (V13.1) Modelled Annual Mean NO ₂ Results Table 2.4 Original (Based on EFT V12.1) Modelled Annual Mean PM ₁₀ Concentrations Table 2.5 Updated (Based on EFT V13.1) Modelled Annual Mean PM ₁₀ Concentrations Table 2.6 Change in concentrations between the Original (V12.1) and Updated (V13.1) Modelled Mean PM ₁₀ Results Table 2.7 Original (Based on EFT V12.1) Modelled Annual Mean PM _{2.5} Concentrations Table 2.8 Updated (Based on EFT V13.1) Modelled Annual Mean PM _{2.5} Concentrations Table 2.9 Change in concentrations between the Original (V12.1) and Updated (V13.1) Modelled Annual Mean PM _{2.5} Results Table 3.1 Original (Based on EFT V13.1) Modelled Annual Mean NO ₂ Concentrations Table 3.2 Updated (Based on EFT V13.1) Modelled Annual Mean NO ₂ Concentrations Table 3.3 Change in concentrations between the Original (V12.1) and Updated (V13.1) Modelled Annual Mean NO ₂ Results Table 3.4 Original (Based on EFT V13.1) Modelled Annual Mean PM ₁₀ Concentrations Table 3.5 Updated (Based on EFT V13.1) Modelled Annual Mean PM ₁₀ Concentrations Table 3.6 Change in concentrations between the Original (V12.1) and Updated (V13.1) Modelled Annual Mean PM ₁₀ Results Table 3.7 Original (Based on EFT V13.1) Modelled Annual Mean PM _{2.5} Concentrations Table 3.8 Updated (Based on EFT V13.1) Modelled Annual Mean PM _{2.5} Concentrations Table 3.9 Change in concentrations between the Original (V12.1) and Updated (V13.1) Modelled Annual Mean PM _{2.5} Concentrations	4 5 5 Annual 6 7 Annual 8 9 10 Annual 11 11 Annual 12 12

Executive Summary

Ex1.1 Introduction

- The Examining Authority (ExA) has requested that a sensitivity analysis for the Kent and Suffolk air quality modelling is conducted to account for an updated Emission Factor Toolkit (EFT). This document presents the results of the sensitivity test and the impact on nitrogen dioxide (NO₂) and particulate matter (PM₁₀ and PM_{2.5}) predicted concentrations for both the Kent and Suffolk Proposed Projects.
- The sensitivity test demonstrates there is generally a very small increase in NO2 predicted concentrations in the Do-Minimum (DM) and Do-Something (DS) scenarios with a maximum increase of 1µg/m³ across both the Kent and Suffolk Proposed Projects. The change in PM₁0 and PM₂.5 predicted concentrations as a result of the updated EFT is negligible at all receptors, for each scenario across both the Kent and Suffolk Proposed Projects.

Ex1.2 Conclusion

Ex1.2.1 The updated EFT does not affect either the Proposed Project's ability to comply with any Air Quality Strategy (AQS) objectives or limit values, and therefore the outcome of the original report remains unchanged.

1. Methodology

- The EFT is used to predict emission rates from sources (in this case road sources) based on vehicle counts, road type, percentage of Heavy Duty Vehicles (HDVs) and the assessment year. As a result, the emission rates for NO₂, PM₁₀ and PM_{2.5} have been recalculated and the ADMS-roads models have been updated for the base year (BY), Do-Minimum (DM) and Do-Something (DS) scenarios. The following parameters remain the same as the initial assessment for both the Kent and Suffolk Proposed Projects
 - Road geometry and road widths;
 - · Meteorological parameters; and
 - Sensitive human and ecological receptor locations
- The change in emissions rates impacts the verification factor used to adjust modelling results based on a comparison of modelled and monitored results. This has been reflected in the results.

2. Suffolk Results

2.1 NO₂ Results Comparison

- Table 2.1 presents the original NO₂ results based on EFT V12.1, Table 2.2 presents the updated NO₂ results based on EFT V13.1, and Table 2.3 presents the change between the two sets of results. Table 2.3 demonstrates that there is a small increase in predicted concentrations in the DM and DS scenarios. The largest increase is at receptors R1 and R4 with a $1\mu g/m^3$ increase.
- Table 2.2 demonstrates that the updated predicted NO₂ concentrations still indicate that there are no predicted exceedances of the annual mean NO₂ AQS objective of 40µg/m³ at any of the modelled receptors. Likewise, it remains that exceedances of the 1-hour mean NO₂ AQS objective are unlikely to occur as the annual mean is less than 60µg/m³. Therefore, as with the original assessment, the change in annual mean NO₂ concentrations at all receptors is negligible (not significant).

Table 2.1 Original (Based on EFT V12.1) Modelled Annual Mean NO₂ Concentrations

	Annual Mean NO₂ Concentration (μg/m³)					
Receptor ID	Base Year (2023)	Do-Nothing (2028)	Do-Something (2028)	Change		
R1	19.7	7 13	.2 13.	.4 0.2		
R2	9.8	3 7	.2 7.	2 0.0		
R3	16.2	2 11	.0 11.	2 0.2		
R4	18.6	5 12	.5 12.	6 0.1		
R5	11.9) 8	.4 8.	5 0.1		
R6	13.9	9	.6 9.	.7 0.1		

Table 2.2 Updated (Based on EFT V13.1) Modelled Annual Mean NO₂ Concentrations

	Annual Mean NO ₂ Concentration (μg/m³)					
Receptor ID	Base Year (2023)	Do-Nothing (2028)	Do-Something (2028)	Change		
R1	19.7	14.2	14.4	0.2		
R2	9.8	7.5	7.6	0.1		
R3	16.2	11.8	12.0	0.2		
R4	18.6	13.4	13.6	0.2		
R5	11.9	8.9	9.0	0.1		
R6	13.9	10.2	10.3	0.1		

Table 2.3 Change in concentrations between the Original (V12.1) and Updated (V13.1) Modelled Annual Mean NO₂ Results

Receptor ID	Annual Mean NO₂ Conce	entration (μg/m³)	
	Base Year (2023)	Do-Nothing (2028)	Do-Something (2028)
R1	0.0 (-0.1%)	1.0 (7.7%)	1.0 (7.8%)
R2	0.0 (0.1%)	0.3 (3.9%)	0.4 (4.9%)
R3	0.0 (-0.1%)	0.8 (7.3%)	0.8 (6.8%)
R4	0.0 (0.2%)	0.9 (7.4%)	1.0 (8.1%)
R5	0.0 (0.2%)	0.4 (5.4%)	0.4 (5.3%)
R6	0.0 (-0.1%)	0.6 (5.9%)	0.6 (6.2%)

2.2 PM₁₀ Results Comparison

- Table 2.4 presents the original PM₁₀ results based on EFT V12.1, Table 2.5 presents the updated PM₁₀ results based on EFT V13.1, and Table 2.6 presents the change between the two sets of results. Table 2.6 demonstrates that there is a negligible change in PM10 concentrations at all modelled receptors between the original and updated results.
- Table 2.5 demonstrates that the updated predicted PM_{10} concentrations still indicate that there are no predicted exceedances of the annual mean PM_{10} AQS objective of $40\mu g/m^3$ at any of the modelled receptors. Likewise, it remains that exceedances of the

24-hour mean PM_{10} AQS objective are unlikely to occur as the annual mean is less than $32\mu g/m^3$. Therefore, as with the original assessment, the change in annual mean PM_{10} concentrations at all receptors is negligible (not significant).

Table 2.4 Original (Based on EFT V12.1) Modelled Annual Mean PM₁₀ Concentrations

	Annual Mean PM ₁₀ Concentration (μg/m³)				
Receptor ID	Base Year (2023)	Do-Nothing (2028)	Do-Something (2028)	Change	
R1	16.0	15.6	15.8	0.2	
R2	12.5	12.0	12.1	0.1	
R3	14.7	14.3	14.4	0.1	
R4	15.9	15.5	15.6	0.1	
R5	13.5	13.1	13.1	0.0	
R6	14.2	13.8	13.8	0.0	

Table 2.5 Updated (Based on EFT V13.1) Modelled Annual Mean PM₁₀ Concentrations

Receptor ID	Annual Mean PM ₁₀	Concentration (μg/m	n³)	
	Base Year (2023)	Do-Nothing (2028)	Do-Something (2028)	Change
R1	16.0	15.6	15.7	0.1
R2	12.5	12.0	12.1	0.1
R3	14.7	14.2	14.3	0.1
R4	15.9	15.5	15.6	0.1
R5	13.5	13.1	13.1	0.0
R6	14.2	13.7	13.8	0.1

Table 2.6 Change in concentrations between the Original (V12.1) and Updated (V13.1) Modelled Annual Mean PM₁₀ Results

Annual Mean PM₁₀ Concentration (μg/m³)

Receptor ID

	Base Year (2023)	Do-Nothing (2028)	Do-Something (2028)
R1	0.0 (0.1%)	0.0 (-0.3%)	-0.1 (-0.7%)
R2	0.0 (-0.2%)	0.0 (0.2%)	0.0 (-0.4%)
R3	0.0 (-0.1%)	-0.1 (-0.4%)	-0.1 (-0.4%)
R4	0.0 (0.2%)	0.0 (-0.3%)	0.0 (-0.1%)
R5	0.0 (0.1%)	0.0 (-0.4%)	0.0 (0.1%)
R6	0.0 (0%)	-0.1 (-0.5%)	0.0 (0.1%)

2.3 PM_{2.5} Results Comparison

- Table 2.7 presents the original PM_{2.5} results based on EFT V12.1, Table 2.8 presents the updated PM_{2.5} results based on the EFT V13.1, and Table 2.9 presents the change between the two sets of results. Table 2.9 demonstrates that there is a negligible change in PM_{2.5} concentrations at all modelled receptors between the original and updated results.
- Table 2.8 demonstrates that the updated predicted $PM_{2.5}$ concentrations still indicate that there are no predicted exceedances of the annual mean $PM_{2.5}$ limit value of $20\mu g/m^3$ at any of the modelled receptors. Therefore, as with the original assessment, the change in annual mean $PM_{2.5}$ concentrations at all receptors is negligible (not significant).

Table 2.7 Original (Based on EFT V12.1) Modelled Annual Mean $PM_{2.5}$ Concentrations

	Annual Mean PM _{2.5} Concentration (μg/m³)				
Receptor ID	Base Year (2023)	Do-Nothing (2028)	Do-Something (2028)	Change	
R1	8.4	8.0	8	3.1	0.1
R2	6.5	6.1	6	5.1	0.0
R3	7.7	7.3	7	7.3	0.0
R4	8.2	7.8	7	7.8	0.0
R5	6.9	6.5	6	5.5	0.0
R6	7.2	6.8	6	5.9	0.1

Table 2.8 Updated (Based on EFT V13.1) Modelled Annual Mean PM_{2.5} Concentrations

Receptor ID	Annual Mean PM _{2.5} Concentration (μg/m³)				
	Base Year (2023)	Do-Nothing (2028)	Do-Something (2028)	Change	
R1	8.4	8.0		8.1	0.1
R2	6.5	6.1		6.1	0.0
R3	7.7	7.3		7.3	0.0
R4	8.2	7.8		7.8	0.0
R5	6.9	6.5		6.5	0.0
R6	7.2	6.8		6.9	0.1

Table 2.9 Change in concentrations between the Original (V12.1) and Updated (V13.1) Modelled Annual Mean $PM_{2.5}$ Results

Receptor ID	Annual Mean PM _{2.5} C	Concentration (μg/m³)	
	Base Year (2023)	Do-Nothing (2028)	Do-Something (2028)
R1	0.0 (-0.1%)	0.0 (-0.4%)	0.0 (-0.6%)
R2	0.0 (-0.2%)	0.0 (0%)	0.0 (0.3%)
R3	0.0 (-0.3%)	0.0 (-0.3%)	0.0 (0.5%)
R4	0.0 (-0.4%)	0.0 (-0.6%)	0.0 (0.3%)
R5	0.0 (-0.3%)	0.0 (-0.3%)	0.0 (0.2%)
R6	0.0 (0.6%)	0.0 (0.6%)	0.0 (-0.3%)

3. Kent Results

3.1 NO₂ Results Comparison

- Table 3.1 presents the original NO2 results, Table 3.2 presents the updated NO2 results based on the EFT V13.1 and Table 3.3 presents the change between the two sets of results. Table 3.3 demonstrates that there is a small increase in predicted concentrations in the DM and DS scenarios. The largest increase in the DM and DS is at receptor R1 with a 0.3µg/m³ increase.
- Table 3.2 demonstrates that the updated predicted NO2 concentrations still indicate that there are no predicted exceedances of the annual mean NO2 AQS objective of 40µg/m³ at any of the modelled receptors. Likewise, it remains that exceedances of the 1-hour mean NO2 AQS objective are unlikely to occur as the annual mean is less than 60µg/m³. Therefore, as with the original assessment, the change in annual mean NO2 concentrations at all receptors is negligible (not significant).

Table 3.1 Original (Based on EFT V12.1) Modelled Annual Mean NO₂ Concentrations

	Annual Mean NO ₂ Concentration (μg/m³)				
Receptor ID	Base Year (2023)	Do-Nothing (2028)	Do-Something (2028)	Change	
R1	14.6	9.0	9.0	0.0	
R2	10.2	7.0	7.1	0.1	
R3	11.3	7.6	7.6	0.0	
R4	10.7	7.3	7.3	0.0	
R5	11.5	7.7	7.7	0.0	

Table 3.2 Updated (Based on EFT V13.1) Modelled Annual Mean NO₂ Concentrations

Receptor ID	Annual Mean NO ₂ Concentration (μg/m³)					
	Base Year (2023)	Do-Nothing (2028)	Do-Something (2028)	Change		
R1	14.5	9.3	9.3	3 0.0		
R2	10.2	7.1	7.2	2 0.1		
R3	11.3	7.7	7.7	7 0.0		
R4	10.6	7.4	7.4	1 0.0		
R5	11.5	7.8	7.8	3 0.0		

Table 3.3 Change in concentrations between the Original (V12.1) and Updated (V13.1) Modelled Annual Mean NO₂ Results

Receptor ID	Annual Mean NO ₂ Concentration (μg/m³)				
	Base Year (2023)	Do-Nothing (2028)	Do-Something (2028)		
R1	-0.1 (-0.7%)	0.3 (3.3%)	0.3 (3.3%)		
R2	0.0 (0%)	0.1 (1.4%)	0.1 (1.4%)		
R3	0.0 (0%)	0.1 (1.3%)	0.1 (1.3%)		
R4	-0.1 (-0.9%)	0.1 (1.4%)	0.1 (1.4%)		
R5	0.0 (0%)	0.1 (1.3%)	0.1 (1.3%)		

3.2 PM₁₀ Results Comparison

- Table 3.4 presents the original PM10 results based on EFT V12.1, Table 3.5 presents the updated PM₁₀ results based on the EFT V13.1, and Table 3.6 presents the change between the two sets of results. Table 3.6 demonstrates that there is a negligible change in PM10 concentrations at all modelled receptors between the original and updated results.
- Table 3.5 demonstrates that the updated predicted PM₁₀ concentrations still indicate that there are no predicted exceedances of the annual mean PM₁₀ AQS objective of 40µg/m³ at any of the modelled receptors. Likewise, it remains that exceedances of the 24-hour mean PM₁₀ AQS objective are unlikely to occur as the annual mean is less than

32µg/m³. Therefore, as with the original assessment, the change in annual mean NO2 concentrations at all receptors is negligible (not significant).

Table 3.4 Original (Based on EFT V12.1) Modelled Annual Mean PM₁₀ Concentrations

Receptor ID	Annual Mean PM ₁₀ Concentration (μg/m³)				
	Base Year (2023)	Do-Nothing (2028)	Do-Something (2028)	Change	
R1	12.7	12.2	12.2	0.0	
R2	12.1	11.5	11.6	0.1	
R3	11.3	10.7	10.8	0.1	
R4	11.1	10.5	10.6	0.1	
R5	11.5	11.0	11.0	0.0	

Table 3.5 Updated (Based on EFT V13.1) Modelled Annual Mean PM₁₀ Concentrations

Receptor ID	Annual Mean PM ₁₀ Concentration (μg/m³)				
	Base Year (2023)	Do-Nothing (2028)	Do-Something (2028)	Change	
R1	12.7	12.1	12.1	0.0	
R2	12.1	. 11.5	11.5	0.0	
R3	11.3	3 10.7	10.7	0.0	
R4	11.1	. 10.5	10.5	0.0	
R5	11.5	10.9	10.9	0.0	

Table 3.6 Change in concentrations between the Original (V12.1) and Updated (V13.1) Modelled Annual Mean PM₁₀ Results

Receptor ID	Annual Mean PM ₁₀ Concentration (μg/m³)				
	Base Year (2023)	Do-Nothing (2028)	Do-Something (2028)		
R1	0.0 (0%)	-0.1 (-0.8%)	-0.1 (-0.8%)		
R2	0.0 (0%)	0.0 (0%)	-0.1 (-0.9%)		
R3	0.0 (0%)	0.0 (0%)	-0.1 (-0.9%)		
R4	0.0 (0%)	0.0 (0%)	-0.1 (-0.9%)		
R5	0.0 (0%)	-0.1 (-0.9%)	-0.1 (-0.9%)		

3.3 PM2.5 Results Comparison

- Table 3.7 presents the original PM_{2.5} results based on EFT V12.1, Table 3.8 presents the updated PM_{2.5} results based on the EFT V13.1, and Table 3.9 presents the change between the two sets of results. Table 3.9 demonstrates that there is a negligible change in PM_{2.5} concentrations at all modelled receptors between the original and updated results.
- Table 3.8 demonstrates that the updated predicted $PM_{2.5}$ concentrations still indicate that there are no predicted exceedances of the annual mean $PM_{2.5}$ limit value of $20\mu g/m^3$ at any of the modelled receptors. Therefore, as with the original assessment, the change in annual mean $PM_{2.5}$ concentrations at all receptors is negligible (not significant).

Table 3.7 Original (Based on EFT V12.1) Modelled Annual Mean PM_{2.5} Concentrations

Receptor ID	Annual Mean PM _{2.5} Concentration (μg/m³)				
	Base Year (2023)	Do-Nothing (2028)	Do-Something (2028)	Change	
R1	6.5	5.9	6.	0	0.1
R2	6.1	5.6	5.	6	0.0
R3	6.2	5.6	5.	6	0.0
R4	6.0	5.5	5.	5	0.0
R5	6.3	5.8	5.	8	0.0

Table 3.8 Updated (Based on EFT V13.1) Modelled Annual Mean PM_{2.5} Concentrations

Receptor ID	Annual Mean PM _{2.5} Concentration (μg/m³)				
	Base Year (2023)	Do-Nothing (2028)	Do-Something (2028)	Change	
R1	6.5	5.9	5.9	9 0.0	
R2	6.1	5.6	5.6	5 0.0	
R3	6.1	5.6	5.6	5 0.0	
R4	6.0	5.5	5.5	5 0.0	
R5	6.2	5.7	5.7	7 0.0	

Table 3.9 Change in concentrations between the Original (V12.1) and Updated (V13.1) Modelled Annual Mean PM_{2.5} Results

Receptor ID	Annual Mean PM ₁₀ Concentration (μg/m³)				
	Base Year (2023)	Do-Nothing (2028)	Do-Something (2028)		
R1	0.0 (0%)	0.0 (0%)	-0.1 (-1.7%)		
R2	0.0 (0%)	0.0 (0%)	0.0 (0%)		
R3	-0.1 (-1.6%)	0.0 (0%)	0.0 (0%)		
R4	0.0 (0%)	0.0 (0%)	0.0 (0%)		
R5	-0.1 (-1.6%)	-0.1 (-1.7%)	-0.1 (-1.7%)		

4. Conclusion

4.1.1 To account for the release of EFT V13.1, the emission rates from road sources relating to both the Suffolk and Kent Onshore Schemes have been recalculated and the ADMS dispersion models have been re-run for NO₂, PM₁₀ and PM_{2.5}. The results show that as a result of the updated EFT, there is generally a small increase in predicted NO₂ concentrations under the DM and DS scenarios, however, the change for PM₁₀ and PM_{2.5} is negligible across all scenarios, for both the Kent and the Suffolk Onshore Schemes. It can therefore be confirmed that the assessment findings as presented in 6.2.2.8 Part 2 Suffolk Chapter 8 Air Quality [APP-055] and 6.2.3.8 Part 3 Kent Chapter 8 Air Quality [APP-068] are not sensitive to the change from EFT V12.1 to EFT V13.1, and that all effects remain negligible (not significant).

National Grid plc National Grid House, Warwick Technology Park, Gallows Hill, Warwick. CV34 6DA United Kingdom

Registered in England and Wales No. 4031152 nationalgrid.com